Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Numer Method Biomed Eng ; 39(11): e3762, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37515447

RESUMO

The heterogeneous model developed by Berod et al [Int J Numer Method Biomed Eng 38, 2021] for representing the hemodynamic effects of endovascular prostheses is applied to a series of 10 patient specific cerebral aneurysms, 6 being treated by flow diverters, 4 being equipped with WEBs. Two markers correlated with the medical outcome of the treatment are used to assess the potential of the model, namely the saccular mean velocity and the inflow rate at the neck of the aneurysm. The comparison with the corresponding wire-resolved simulations is very favorable in both cases, and the model-based simulations also retrieve the jetting-type flows generated downstream of the struts. Noteworthy, the very same model was used for representing the flow diverters and the WEBs, showing the versatility and robustness of the heterogeneous modeling of the devices.


Assuntos
Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/cirurgia , Hemodinâmica , Stents
2.
Interv Neuroradiol ; : 15910199231152514, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36734097

RESUMO

INTRODUCTION: The Woven EndoBridge device (WEB) was developed as an alternative to treat Wide-Necked bifurcation aneurysms. It has proven to be effective and safe, however, cases of recanalization have been reported. The purpose of this study was to evaluate and quantify hemodynamic parameters and indexes with CFD of the intracranial aneurysms before and after WEB simulation and to establish their relationship to complete occlusion. MATERIALS AND METHODS: Using the heterogeneous model based on the marching cubes algorithm, we created 3D representations of 27 bifurcated intracranial aneurysms treated with the single-layer WEB device to evaluate hemodynamics parameters with CFD, calculated with and without the WEB. RESULTS: We observed a lower treatment entry concentration indices (ICI) (2.12 ± 1.31 versus 3.14 ± 0.93, p-value: 0.029) previous to placement of WEB and higher pre-treatment FN (7.56 ± 5.92 versus 3.35 ± 1.51, p-value: 0.018) and post-treatment FN (5.34 ± 5.89 versus 1.99 ± 0.83, p-value: 0.021) for cases with successful occlusions. Lower post-treatment SRa (197.81 ± 221.29 versus 80.02 ± 45.25, p-value: 0.044) and higher pre (0.11 ± 0.07 versus 0.25 ± 0.19, p-value: 0.011) and post-treatment MATT (0.69 ± 1.23 versus 1.02 ± 0.46, p-value: 0.006) were observed in non-occluded cases. CONCLUSIONS: In our CFD analysis of the hemodynamic parameters of IA, we found lower ICI before the placement of the WEB device and higher FN pre- and post-treatment for cases with successful occlusions. Non-occluded cases had lower post-treatment SRa and higher pre-treatment and post-treatment MATT.

3.
Interv Neuroradiol ; : 15910199231152504, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703556

RESUMO

INTRODUCTION: The Woven EndoBridge device (WEB) is used to treat wide-neck bifurcation aneurysms. These devices are deployed inside the sac. Therefore, the mesh structure provides apposition with the aneurysm wall and induces aneurysmal thrombosis. The objective of our study was to evaluate the anatomic and device-related parameters and indexes with Computational Fluid Dynamics (CFD) of the intracranial aneurysms before and after WEB simulation and find their relationship to complete occlusion. MATERIALS AND METHODS: Using the heterogeneous model based on the marching cubes algorithm, we created 3D representations of 27 bifurcated intracranial aneurysms treated with the single-layer WEB device to evaluate anatomic and device-related parameters with CFD. RESULTS: In our CFD analysis, we observed higher large volumes (Va) (0.25 ± 0.18 versus 0.39 ± 0.09, p-value= 0.025) and higher volume to neck surface ratio (Ra) (1.32 ± 0.17 versus 1.54 ± 0.14, p-value= 0.021) in cases with occlusion failure. CONCLUSIONS: Large aneurysm volumes (Va) and higher volume to neck surface ratio (Ra) could be associated with occlusion failure in aneurysms treated with the WEB device.

4.
Phys Med Biol ; 67(9)2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35358961

RESUMO

Objective. Intraventricular vector flow mapping (iVFM) is a velocimetric technique for retrieving two-dimensional velocity vector fields of blood flow in the left ventricular cavity. This method is based on conventional color Doppler imaging, which makesiVFM compatible with the clinical setting. We have generalized theiVFM for a three-dimensional reconstruction (3D-iVFM).Approach.3D-iVFM is able to recover three-component velocity vector fields in a full intraventricular volume by using a clinical echocardiographic triplane mode. The 3D-iVFM problem was written in the spherical (radial, polar, azimuthal) coordinate system associated to the six half-planes produced by the triplane mode. As with the 2D version, the method is based on the mass conservation, and free-slip boundary conditions on the endocardial wall. These mechanical constraints were imposed in a least-squares minimization problem that was solved through the method of Lagrange multipliers. We validated 3D-iVFMin silicoin a patient-specific CFD (computational fluid dynamics) model of cardiac flow and tested its clinical feasibilityin vivoin patients and in one volunteer.Main results.The radial and polar components of the velocity were recovered satisfactorily in the CFD setup (correlation coefficients,r = 0.99 and 0.78). The azimuthal components were estimated with larger errors (r = 0.57) as only six samples were available in this direction. In bothin silicoandin vivoinvestigations, the dynamics of the intraventricular vortex that forms during diastole was deciphered by 3D-iVFM. In particular, the CFD results showed that the mean vorticity can be estimated accurately by 3D-iVFM.Significance. Our results tend to indicate that 3D-iVFM could provide full-volume echocardiographic information on left intraventricular hemodynamics from the clinical modality of triplane color Doppler.


Assuntos
Ecocardiografia Doppler em Cores , Ventrículos do Coração , Velocidade do Fluxo Sanguíneo , Ecocardiografia Doppler em Cores/métodos , Ventrículos do Coração/diagnóstico por imagem , Hemodinâmica , Humanos , Hidrodinâmica
5.
Int J Numer Method Biomed Eng ; 38(2): e3552, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34806847

RESUMO

Numerical computations of hemodynamics inside intracranial aneurysms treated by endovascular braided devices such as flow-diverters contribute to understanding and improving such treatment procedures. Nevertheless, these simulations yield high computational and meshing costs due to the heterogeneity of length scales between the dense weave of the fine struts of the device and the arterial volume. Homogeneous strategies developed over the last decade to circumvent this issue substitute local dissipations due to the wires with a global effect in the form of a pressure-drop across the device surface. However, these methods cannot accurately reproduce the flow-patterns encountered near the struts, the latter strongly dictating the intra-saccular flow environment. In this work, a versatile theoretical framework which aims at correctly reproducing the local flow heterogeneities due to the wires while keeping memory consumption, meshing and computational times as low as possible is introduced. This model reproduces the drag forces exerted by the device struts onto the fluid, thus producing local and heterogeneous effects on the flow. Extensive validation for various flow and geometric configurations using an idealized device is performed. To further illustrate the method capabilities, a real patient-specific aneurysm endovascularly treated with a flow-diverter is used, enabling quantitative comparisons with classical approaches for both intra-saccular velocities and computational costs reduction. The proposed heterogeneous model endeavors to bridge the gap between computational fluid dynamics and clinical applications and ushers in a new era of numerical treatment planning with minimally costing computational tools.


Assuntos
Procedimentos Endovasculares , Aneurisma Intracraniano , Artérias , Hemodinâmica , Humanos , Hidrodinâmica , Aneurisma Intracraniano/cirurgia , Stents
6.
Phys Med Biol ; 66(24)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34874296

RESUMO

Color Doppler by transthoracic echocardiography creates two-dimensional fan-shaped maps of blood velocities in the cardiac cavities. It is a one-component velocimetric technique since it only returns the velocity components parallel to the ultrasound beams. Intraventricular vector flow mapping (iVFM) is a method to recover the blood velocity vectors from the Doppler scalar fields in an echocardiographic three-chamber view. We improved ouriVFM numerical scheme by imposing physical constraints. TheiVFM consisted in minimizing regularized Doppler residuals subject to the condition that two fluid-dynamics constraints were satisfied, namely planar mass conservation, and free-slip boundary conditions. The optimization problem was solved by using the Lagrange multiplier method. A finite-difference discretization of the optimization problem, written in the polar coordinate system centered on the cardiac ultrasound probe, led to a sparse linear system. The single regularization parameter was determined automatically for non-supervision considerations. The physics-constrained method was validated using realistic intracardiac flow data from a patient-specific computational fluid dynamics (CFD) model. The numerical evaluations showed that theiVFM-derived velocity vectors were in very good agreement with the CFD-based original velocities, with relative errors ranged between 0.3% and 12%. We calculated two macroscopic measures of flow in the cardiac region of interest, the mean vorticity and mean stream function, and observed an excellent concordance between physics-constrainediVFM and CFD. The capability of physics-constrainediVFM was finally tested within vivocolor Doppler data acquired in patients routinely examined in the echocardiographic laboratory. The vortex that forms during the rapid filling was deciphered. The physics-constrainediVFM algorithm is ready for pilot clinical studies and is expected to have a significant clinical impact on the assessment of diastolic function.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador , Velocidade do Fluxo Sanguíneo , Ecocardiografia/métodos , Humanos , Hidrodinâmica , Interpretação de Imagem Assistida por Computador/métodos , Física
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...